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ABSTRACT

The secular characteristics of the motion of asteroids in resonance
with Jupiter are analyzed. The Trojan group is given special attention
by a description of these characteristics in a complete qualitative and
quantitative manner. Except for collision orbits, the eccentricity and
inclination of the asteroid can take any value. The short-period perturba-
tions caused by Jupiter are averaged by a nonlinear numerical application
of von Zeipel's method. Elimination of the resonant argument is carried,
in a semianalytical way, to an approximation of the order of the mass of
Jupiter. The final system, with one degree of freedom, is represented by
isoenergetic curves in the phase plane (w, e). The various steps of solution

allow a description of the general features of motion for a very long time.

RESUME

Les caractéristiques séculaires du mouvement des astéroides en réso-
nance avec Jupiter sont analysées. Une attention particuliere a été por-
tée au groupe Troyen pour lequel la description compléte qualitative et
quantitative, de ces caractéristiques est présentée. Si l'on excepte le
cas des orbites de collision, l'excentricité et l'inclinaison des asté-
roides peuvent prendre n'importe quelles valeurs. La moyenne des pertub-
bations de courte durée causées par Jupiter est obtenue par une applica-
tion numérique non-linéaire de la méthode de von Zeipel. L'€limination
de 1'argument de résonance est poursuivie de maniére semi-analytique,
juSqu'é un degre d'approximation de l'ordre de la masse de Jupiter. Le
systeme final, a un degré de liberté, est représenté par des courbes dle-
gale énergie dans le plan des phases (w, e). Les différentes étapes de
solution permettent une description des proprietés generales du mouvement

pour une période de temps tres étendue.




KOHCHEKT

AHaNU3UPYyOTCA BEKOBHE XapaKTEPUCTHKM IBUXEEHMA aCTEPOUIOB B
pesonadce ¢ lnurepoM. Ocoboe BHUMaHMe YAEINFeTCA TPOAHCKOH rpynme
IyTeM ONMCAHHUA DTUX XapaKTepUCTHK B IOJHOM KaueCTBEHHOM U KOJIW-
YyeCcTBEHHOR ¢opMe. 3a MCKADUEHHEM OPOUT CTOJKHOBEHMHE, BKIEHTPHUCK-
TeT M HAKJOH acTepouia MOTYT NPUHATH J0OYH0 BeJUUMHY. BoaMymeHus
KOPOTKOI'O IEpHOLA Bhi3biBaeMbe NOuTepoM, YCEPEeNHAKNTCA INOCPEeILCTBOM
HeIMHERHOTO UUCJIEHHOTO IpUMeHeHus MeTorza GoH 3einena. HckawnueHue
LE€30HAHCHOTO apryMEHTa NUOK3BOJLUTCA IOJNYAHAJUTUUECKUM IIyTEM, K
NpubIukeHun NopAgra Macce Knurepa. KoHeunas cucremMa c OILHOM cTe-—
MEHbLH CBO6OIL M306pakeHa M303HEepreTHUUECKHMM KDUBLHIMU B (pazoBOH
nirockocTy (w,e). PaznvuHbe mary peweHHWS NO3BOJAKNT ONUCATL TJlaB-

Hbl XapaKTepUCTHKY IBUXEHHNA IOJA OUEeHb HOJIOI'O BPEMeHH.

vi



SECULAR MOTION OF RESONANT ASTEROIDS

G. E. O. Giacaglia
1. INTRODUCTION

Many efforts have been made to describe the properties of two-dimensional
orbits, near the 1/1 resonance case, in the restricted three-body problem.
Most of them make use of a linear analysis; that is, they deal with libration
orbits in the vicinity of the triangular equilibrium points. This work tries

to eliminate every restriction, with the exception of collision orbits.

The numerical application of von Zeipel's method avoids all questions
concerning the convergence of the series for the elimination of short-period
terms in the Hamiltonian function. Its validity extends to any value of the
osculating eccentricity (less than unity) and of the inclination. Since the
departure from the equilibrium Lagrangian points is arbitrary (always
assuming that the mean motion is close to that of Jupiter), special cases of
interest may be included, such as, for instance, the outer satellites of Jupiter.
It is well known that there are satellite problems in which the perturbations
from the sun are so severe that both satellite and planetary theories fail to
give results valid for longer than a few hundred revolutions. Since secular
features may have periods up to several million revolutions, such results
are absolutely useless when those features are to be determined. To the
present, the best method of analysis of very unusual satellite orbits still
remains Kovalevsky's method of computing numerical coefficients for the

representative Fourier series.

This work was supported in part by Grant NsG 87-60 from the National
Aeronautics and Space Administration.




Pure numerical integration not only gives very restrictive results with
little chance of extrapolation but also becomes completely meaningless after
a sufficiently long time, owing to round-off and truncation errors. Even
if these errors could be efficiently controlled, no available computer is able
to perform, in a reasonably short time, an integration for periods of the

order of millions of years.

It is hoped that the present research may furnish a way of handling the
problem of exceptional planetary and satellite orbits in a more systematic
and uniform way. A theory analogous to the one presented here was developed
by G. Hori with the collaboration of the author of these notes (Hori and
Giacaglia, 1965); it produced highly satisfactory results when applied to
the problem of the secular motion of Pluto in resonance with Neptune.
In fact, by this method it has been possible to predict all qualitative and
approximate quantitative features of that motion; these results agree with
the numerical integration performed by Cohen (Cohen and Hubbard, 1965;
Cohen, Hubbard, and Oesterwinter, 1967).

It should be remarked that one of the main difficulties found in the
development of a general perturbation theory for resonant asteroids with
nonzero inclination to the orbital plane of Jupiter is the presence of two
slowly varying angular variables:' the argument of perihelion and the resonance
argument (a linear integral combination of the mean longitudes of the asteroids
and Jupiter). With the choice of appropriate variables and a careful applica-
tion of von Zeipel's method, that doubly degenerate phenomenon can be brought
into a form that can be treated mathematically. Moreover, in view of recent
results by Arnold (1963), Moser (1967), and Giacaglia (1967) concerning
von Zeipel's method, there seems to be some hope that the process will
converge. Further, the numerical process allows any values to be used for
eccentricity and inclination; this fact overcomes the great obstacle of an

analytic development of the disturbing function.



2. GENERAL THEORY

In this section, we consider the motion of an infinitesimal mass point
(asteroid) in the gravitational field of two particles (the sun and Jupiter)
revolving in circular orbits around their common center of mass. The
model and units used throughout are those of the three-dimensional restricted
problem of three bodies (Szebehely, 1967). We will assume that the mean
motion of the asteroid and that of Jupiter are in a close, low-order, rational

relation.
The equations of motion of the asteroid can be written

T A
fi=-%n c Ly=ter oL 2,3, (1)

j j

wherell =14, 12=g, £3=h=Q-)\1, L1 =1, L2=G, andL3=Hare
the usual Delaunay variables, with the exception of h, the longitude of the
ascending node reckoned from the instantaneous position of Jupiter, which
is defined by its mean longitude A The origin is taken at the sun, and
the reference system rotates about the z axis in such a way that the x axis

always contains Jupiter in circular orbit at unit distance from the sun.

Since our present interest is long-range behavior, the indirect part of
the disturbing function will be neglected. With the above assumptions, the

Hamiltonian f can be written

B 1 1 1 e *
f —2—11-2+H+6(K-—1:)-f0+f1 , (2)

where A and r are the distances asteroid-Jupiter and asteroid-sun,

respectively, and ¢ = rnl/(mO + ml) . Let n = 1 be the mean motion of



Jupiter and n that of the asteroid. The near-resonance case corresponds to

the relation
n
LB (3)
n q

where p and q are small relatively prime integers. For inferior asteroids

P <q, and for superior ones p > q. The angle p\ - g\,, where \ is the mean

1’
longitude of the asteroid, will therefore vary slowly, and we call it the
resonance argument. In other words, the quantity (-p/L3) +9q=-pn+ qn,

is small as compared with unity (how small it is we will later define).

The following canonical variables are now introduced:

= = _.-B

Yo 1, X, L qH s
~ H

y; =PA-a\ +(@-p)w =pl+qg+agh , x, =—,

1 1 1 o]
Yo, =8 x, =L -G , (4)

where \ = ¢ + g+Q, h=Q-\, and ¥ =g+ Q

The equations of motion (1) become

- af . of .

T T ey 0 b2 (%)

—1 —2 3 -
f —fo +f1 =5 (xo +px1) +qx1 +f1(x0, SRR IRATRIE €)

= f(xo-' xll XZ ; YO: le Yz;e)




The first step in the solution is the reduction of the problem by one degree
of freedom, by elimination of the fast variable Yo through an averaging

process. The reduced system will correspond to the Hamiltonian

2pm
1 -
¢ =§Il;; f fdy, =5 (£, + p§)) ‘4 qf | +¢,(6,5. 6., 6,5m . m55¢)
0 = £
y=m
=9, td =6, 6,,655m,mn556) (6)
where
2pm
4 =g [ S dy, -5 =e[D(§O,§1,§2;n1,n2) —IJ (7)
a a
0
and

2
* 2 *
a =(§O+p§1) =L

The canonical transformation from the variables (x,y) to (§,n) is formally

generated by a function

z = 2(§OJ§1)§2; Yo’Yl’Yz; €)

such that
o> 2 .
.S, . = ,j=20,1, 2
% 3Yj M BEJ- !

2 .
It corresponds, with an error of 0(e¢ ), to a complete solution of the

von Zeipel equation



Q

3T 08X 0 S\ L 9z 9T |
-f(aYOJ ayl 3 ayz) Yo)leY29 E> - ¢ <§01g1)g2! agl 2 agz y €

under the conditions

(a) (g €1, 653 Y Y 0V 0) = vy + £y 659,
and
2pm
1 —
(b) Z_P?f = dyO =0
0

This function will not be determined, since it is not needed for the purpose

of this work.

With the introduction of the Hamiltonian ¢, the corresponding equations

of motion give
§0 =L - ﬂg H = const (8)
and

. _ 94 : 3¢ :
A v ] .= - mE > = 1: 2 ’
§J o, " agj (j )

so that the new system has two degrees of freedom. The variable n, can
be obtained by quadrature. For a fixed value of ¢, the function ¢ can be
evaluated numerically as a function of the five parameters §0, 51, §2, n;.

and -

In the second stage of solution, a new canonical transformation to the
variables (X,Y) is introduced. It will be defined by a generating function

S(XO’ XlJ XZ; nox n]., nz; €) SU.Ch that



_8s _8s _
% am,  YjTax, - (=0 L 2)

. j j
where

S(Xg, Xy, X535 My, mp,my; 0) = X +X +X =S

oMo 1M 2M2 7 %

Assuming further that both S and the new Hamiltonian F can be developed

. : 1/2 .
in power series of ¢ , We can write

_ - 1/2 3 . )
S-so+sl/2+sl+... —-SO+e S(XO,XI,XZ,nl,nZ,e)

F=Fy+F ,,+F +... =FX,,X.X,; Y,5e)

so that XO = §0. The function S satisfies the von Zeipel equation

9S aS )
ut

e\ = .85 |
ano,- anl s 87]2 ’ 7]1,112: €> - F<XO)X1:X2! 8X2 ’ E> ’

where

1 -2
=3 (X +pX) ™" +ax

The basic assumption for the solution of the above equation is that the

derivative

, a¢0 -3 sk
¢0=5—§T =-pP(X;+pX;) "+q=q-pn (9)
£=X



is of the order of El/Z or higher. This is the width of the resonance region

(Hori, 1960). The von Zeipel method gives for Sl/Z the equation

» 9S8 5 (851/2

¢oan1 7 % 5, ) T4 (Ko X Xpimpmpi€)

= FI(XO’XI’XZ; PSS B (10)
Further, since ¢1/2 =0, Fl /2 = 0.

The first-order part F, of the new Hamiltonian is defined by

1

FI(XO,Xl,XZ;YZ;e)=1;’nn;r§¢1 ) (11)
£=X
n=Y
0_ .0 . . . 0 . . ;
and n, = nl(go,gl, éZ’ nz), that is, the point m of minimum of ¢1 will, in

general, be a function of {S,O, §1, éz, Ny If we now define

& = (#) - min d’1>‘ = 8 (Ko X0 Xp5mpmp)
imi £=X

the function Sl/Z will satisfy the equation

2

+ + ¢ . = :
) ¢1(X0: X].,XZ’ nl, T]Z) =0 >

N 851/, 1 K 8S, /5
0 3, z %0

or

’ r 2 ~ 1/2
8S 6 $ P
31/2=-—-,9fc[< °> S 2 . (12)
n o




Since Sl /2 has to be real, the interval of variation of ™ is defined. Moreover,
the minimum of 4)1 with respect to mn is zero whatever n,- There will be

circulation or libration in m if

ro2
max (2 i}-) §<j)—,07)
%”1& 9 o

for each value of n, and of the parameters X X, »X5. Certainly, the function

OJ
¢l does not contain terms independent of M in the sense that its Fourier

representation will be

Z Z o X X,) exp ['\/-_1<k1 2(;—+k2'q2> j\

k¢0 k

In the circulation case, equation (12), with the choice of only one of the signs,
defines 51/2' In the libration case, 51/2 is a two-valued function of ny s

the sign changing at every end point of the libration interval.

With an error of the order of 63/2, the new Hamiltonian is

F=F)(X,,X))+F (XX, X5 Y5 €) . (13)

Along any solution of the differential system generated by the original

3/2
Hamiltonian, F differs from a constant by a quantity of the order of ¢ /
and generates the one-dimensional dynamical system
X, =30 , Y, = -0 . (14)
2 2



On the other hand,

and

ek *
It follows that H and L

mean elements, "

3k
a

const

*%2.1/2
e

(1 - )

ok

The definitions of a

a** _ L**z
f%2 kK

n a
(1- ed‘*z) a*
cos I*

(15)

(16)

x®

are constant, or in terms of Keplerian ''mean

) (17)
oKk
cosI = C = const (18)
ek ok
,e ,andl are
= (X, +pX,)? (19)
o P™
3 =1
oo™ (x. +pX, - X
- '( 0 P 1 - 2)
* E__ T (20)
G r XptprX) - X,

10



3. CHARACTERISTICS OF SECULAR MOTION

With an error of O(e), we are able to develop the general features of the

secular motion as follows. We have

9S
L*=§0+p§1 =§0+p<Xl +—8—ﬁi—/2—>+0(e)

9S oS
_ 1/2 _ Lk 1/
-§0+pxl+p8111 + O(e) = L +panl + Ole) ,
so that
* %2 sl /2 08 2
a = =<a,>. +pal/2 + Of(e)
M
89S
* *¥k Skok
a =a 2pa 112 12 o (21)
8111
Making use of equation (19), we have
1 ok wx-3/2
¢0=-pn +q=- pa +q
and
" 2 -4 392
¢O - 3P (XO + le) - a*:}:z
Equation (21) and the definition of Sl/Z give
* £ ¥ )
a =a, + Aa , (22

11




where

T 5 2q **3/2
a5 =32 (- 5p 2 ) (23)
and
%3k4 sk 1/2
* Aok xx-3/2 2 ~
Aa = 2pa 1/2|:a 7 (P2 -q) - 12 ¢ (Xgs X0 X505 Yl,YZ)] .(24)
9p p

It follows that in the libration case the mean semimajor axis (averaged over

*
short-period perturbations) will oscillate around the value a, - Note that

X %k

%
ifn  =gq/p, the value of a,

semimajor axis corresponding to exact resonance. Further, the value of

. %k . .
is equal to a , which is the mean mean

Aa . On the other hand, by definition 31 is always nonnegative, so that the

maximum value of Aaa\ corresponds to Y1 = n(l)(XO, Xl’ Xz; YZ)’ which gives

¢1 = 0. Therefore,

can never be zero and will always be larger than the maximum value of

*%5 /2
% 2 sk
max Aa = 1-5-—— (pn - q) = Ofe !

2y (25)

We conclude that long-period perturbations on the semimajor axis are of

1/2

the order of ¢ ', larger than the values expected in the nonresonance case.

We also see that a is affected by two very different periods associated

with Y1 and YZ' From the equations
: b ] sk
Yl =-a—F— = pn -q+O(e)=O(el/2) (26)
1
and
v, =-2% -o0¢) , (26)
2 0 2

12




it follows that the period corresponding to Y, is larger than that corresponding

to Yl; that is,

-1/2

T, =0 )y > T, = 0@ 3

2 1

£ %
The amplitude Aa is associated with Tl’ since the maximum of Aa is reached

when Y1 = 11(1) (libration case).

By definition, if the angle Y, undergoes a libration process, Aa” will
be zero at the end points of this libration. The end points correspond to the

maximum and minimum values Y, can reach in order to result in a real S

1 1/2°

If ?1 is the mean value of Y1 and 6 is the semiamplitude of libration,

then Aa™® will be zero at ?1 + 6. It can be expected that if the influence of

Y2 in n(l) is not very strong, then?1 = n(l) approximately. When Y1 is

maximum or minimum, Aa is zero; therefore, there will be a constant phase

*
shift between the oscillations of Y1 and a in time.

ok ok
With respecttoe andI , as a consequence of equation (18) we see

sesk

bt *
that when e increases, I decreases, and vice versa. Since these two
elements are affected by the long period TZ’ in general their secular motions
will have such a period. It is also possible to show that the perturbations

on a are larger than those on e and I. In fact,

- 0x _
xO_XO+8yO —XO+O(e)
aS
_ 0 1/2 _ 1/2
xl_X1+§—Y_l-+aTll —X1+O(€ )
9S
_ D) 1/2 _ 1/2
xZ—X2+3—§;+8_T]2——X2+O(E Y

13



so that

or

1/ /2
€

. . 33 2 1
G-H=G + Of ) = O(e )

/2) and e, I are Ofe). We conclude that the perturbations

. .. 1
finally, &a is Ofe
in the eccentricity and inclination are relatively smaller than are the

perturbations in the semimajor axis. If perturbations of O(e) are neglected

as compared with those of Of(e 1 /2), we obtain
Y. = o t+Y
o~ " 00
Y1=(pn -q)’c+Y10
Y, = YZO , (27)

and XO, Xl’ X2 are constant. The mean elements (averaged over short-period
perturbations, which are of O(e)) will be given by

14



39S 39S

_ 1/2 1/2
80 = Xo- g1‘X1+an1 & T X e

9S

_ skt 1/2

o= tH ¥ TR,
35S
sk l 2
’11 =(Pn 'Q.)t+Y10"8X/ >
1
39S

_ /2

My = Yo0 - ax, ’ (28)

where in the right-hand members the variables n n, can be substituted
by Yl’ YZ. This is the complete solution, with an error of O(e), since

SI/Z is a known function. In the circulation case it can be defined as
51/2 = LEE dny (29)

and in the libration case,

n

1
85
_ 1/2
Sl/z“f on, dmy (30)

0
M

where 'q(l) is a function of X XI’XZ’ and Ny The choice of a plus or a

0)
minus sign in equation (12) depends on the variable n, being in the interval

0 = = 0 _<= .
Y1—6=n1<n15Y1+60rY1 -6Sn15n1=Y1+6, respectively.

15/16



4. MOTION OF PERIHELION

The final stage of solution corresponds to the analysis of the one-

dimensional system generated by the Hamiltonian as defined by equation (12);
that is,

- 3/2
F—FO(XO,X1)+F(XO,X X Yz,e)+0(e )

312y,

Since XO and Xl are constants, it follows that, neglecting terms of O(e

we have Fl = const or, according to equations (6) and (11),

2pm
1 I
f A dyo =D = const |, (31)
0 x =X
¥, = M(XiY5)
v2 = Y3

where x and X stand for (xo, X5 XZ) and (XO’ XI’XZ)’ respectively. Moreover,
X0 and X1 are constants. The value N AN (XO, Xl’ XZ; YZ) is defined by

the minimum point of D with respect to ul for every value of 1,, §0, §1, §2

or, within our prec1s1on with respect to Yl for every value of YZ’ X Xl’ XZ'
Both Mo and D can be determined numencally, and the final outcome for
fixed values of XO and X1 will be the function D * (X , Y ), which is
independent of the.particular value of e. A plotof D = const in the plane
(XZ, YZ) will therefore show the 1ong>=:>:ange behavior of perihelion and
eccentricity. For a fixed value of a , the parameters we are left with are
e** and I**. Since these elements are related by equation (17), fixing the
value of C will produce curves of D* as functions of Y, = w** with the only

ok
parameter e . From this one-parameter fam1ly of curves, we can construct
Xk % . .
D = const curves in the plane (w , e ). Such a plot immediately gives
ok
the libration or circulation character of w , which appears to be independent

of e.

17




The scaling of the mathematical model with the actual motion of an
asteroid depends essentially on a set of observed values during a time not
shorter then the period T, . Both the librition >ior circulation) characteristics
of Y] and the amplitude of oscillation of a , Aa , will allow the determination

of a". The constant C and a pair of values (e, w ) will identify the partic-

ular D>:< = const curve, that is, the libration or circulation processes in Y2
together with the ranges of variation of e** and I**. With the value of a™¥,
the more important part (pn** - q) of the mean motion of Y1 can be found,

that is, its period, which should be compared with the observed value. In

order to evaluate the period of Y,, we can use the equation

_, oD
7Y,

_or _°F
2”3y, " oY,

X Y

(X., X, X

o X1 Xy (32)

2)

If we construct a curve of 1/e (BD% /E)YZ)"1 versus X2 from Xz(min) to
Xz(max), the area under this curve will immediately give half the period in

YZ. Of course, in the construction of the right-hand member of equation (32),

the relation between Y, and X2 must be obtained from the corresponding

D = const curve, while X0 and X1 are kept constant.

18




5. THE TROJAN GROUP

When p = q =1 (exact resonance) and I = e = 0, the corresponding
solutions are the Lagrangian triangular equilibrium points. The general
problem of totality of motions in the vicinity of this 1/1 resonance case has
been chosen as an example of the general theory described in the previous

sections.

For a = 1, the disturbing function 1/A (equation (2)) was averaged
numerically with the use of the parameters C, e, Y- and Vo in the following

ranges:

C =0.1(0.1)0.9
e =0.01(0.01)0.99
yq = 0°(15°) 180°
y, = 0° (15°) 180°

The result is the function D(go, §1, {E,Z; uige nz), given by

2t
1 1

~ 2n A dy

0]

according to equation (7). With the use of C, e, and y, as parameters, the
function D has been plotted versus Ny, as shown in Figures 1 through 36. The
function D is related to ¢l by equation (7). These figures show that whatever
the values of the parameters, the variable Ul undergoes a libration process.
The amplitude of libration\"depends strongly on the values of C, e, and Yp- It
must be noted that since a  is not a constant at this stage, the function D is not
constant through the motion. Within the precision of the theory, the constant

Hamiltonian is the complete function ¢ by equation (6).

19



The second stage of solution is the determination of F1 (equation (11)),
which we do by inspection, determining the minimum value of D for every
value of C, e, and v, with respect to n and the point of minimum
nl (C, e, YZ)' From Figures 1 to 36 we see that for small eccentricities
the minimum is attained close to T]l = 60° . As the eccentricity increases,
the minimum shifts to or near nl = 0°. Therefore, tl:fe maximum deviation
of the mean semimajor axis a from the mean value ao is reached around

s 60° for orbits of small eccentricity and around ny = 0° for highly eccentric

orbits. Moreover, since n, measures the mean elongation between Jupiter

and the asteroid, for n, 0 and e = 0 the disturbing function is discontinuous,

"

while for n, = 60° and e = 0 the minimum is at exactly 60° , which defines the

Lagrangian equilibrium points (nl = 60° or 60° + 180°).

Once we have the minimum of q)l for every C, e, and y,, we can produce
a plot of Fl (equation (11)), or actually of the minimum D' of D, since at
this stage a®™ is constant. The basic parameter for this plot is C from 0.1

to 0.9 by steps of 0.1. Figures 37 to 45 show the function D" plotted against

Y2 for every C by use of e as a parameter. Furthermore, since D  is

constant because a is constant, any line in these graphs drawn parallel to

the Y2 axis will define the variation of e as a function of w along an orbit.

In order to make evident the character of motion of the perihelion, we
redrew the previous graphs, using C as the main parameter and plotting
curves D* = const in the plane (w, e). Figures 46 to 54 show such isoenergetic
curves. In the interval (0, m) of Yy, wWe find a libration center and a saddle
point for every value of C from 0.1 to 0.9. The libration center remains
close tow = 135°, and the corresponding eccentricity increases from 0.29
to 0.40 as C increases from 0.1 to 0.9, while the "energy' constant D*
decreases from 0. 722 to 0. 670 and then increases again to 0. 744. The
location of the saddle point is always around w = 30°, and the corresponding
eccentricity increases from 0 to 0.40. When the constant C goes above the
value 0.7, there is a sh1ft of the saddle point that reaches w = 90° at C = 0. 9.
The energy constant D decreases from 0. 632 to 0 551 and then increases to
0.727.
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However, for C larger than 0.2 and smaller than 0. 8 another pair of
libration center and saddle point appears in the picture. This new libration

center is at w = 90° and corresponds to highly eccentric orbits. For such

centers the eccentricity decreases from 0. 94 to 0.71 as C increases from

0.3to 0.7. The corresponding energy constant D decreases from 0.214

to 0.172 and then increases to 0.212 for C = 0.7. The overall mechanism
appears to be a shifting of stable points into unstable ones, which goes through
a complex phase space configuration for intermediate values of C, We note,
however, that all numbers shown are only approximate, so that a very fine
structure of the system may be completely missing. In any event, the two
parallel lines at e = 0 and e = € ax (which is defined by C) always correspond
to asymptotic motion from or toward unstable configurations. Moreover, for
all values of C, according to the value of the energy constant D*, which is

defined by a pair (w,e), the variable w may undergo libration or circulation.

Table 1 shows the above description in a condensed form. The position
of an actual situation in the described totality of motions requires a certain
amount of information from observations or numerical integration. Such

information should cover a time at least equal to the period of libration in
Yy If we know the actual value of the ratio (max Aa"\)/ag,
the computation of the integration constant a by equations (23) and (25).

this will allow

An approximate value can be obtained by interpolation. Table 2 shows the

St sle

relation between n  and (max Aa’P)/ag within the region of resonance for

€ =107>, that is, for [n"" - 1[551/22 0.035.

ale ate
KN

te ale

The value of aawP

als

thus found determines the mean mean motion n  of the

asteroid. We note, however, that, as seen from Table 2, for one value of
* %k £ £
Aa /aO there are two values of n  (or a

*

) satisfying that value. Such a
double determination must be eliminated by a reference once more to the
observed secular trend of Y0 or Y1 (direct or retrograde motion). If the

amplitude of libration of ul is known, the function Sl /2 can now be determined,
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X
as can the perturbations of long period Tl. The value of D that defines the
ok *3k . . .
evolution of ¢ and w along an orbit over the longest period T2 is defined
by a pair of such elements at some epoch, given by observations or numerical

integration.

The last information given by the theory is the long period T2 ( of

libration or circulation) of the mean mean argument of perihelion. Since
#d ok . ) ) ok Rk ok
the orbit in the (w ,e )} plane is defined, the function e = e (w )is
ok
known together with the values of a and C. Equation (32) and the method

developed there can therefore be applied.

Table 1. Location of stable and unstable points in the (v, e) plane

w

w w (additional
¢ . lmmem g (e e Memde
max

0.1  0.99 135° 0.722 0.29 30°  0.632 0 - - -
0.2 0.98 135° 0. 701 0.29 30° 0.609 0 - R -
0.3 0.96 135° 0. 685 0.29 27" 0.586 0 90° 0.214 0.94
0.4 0.92 130° 0. 675 0.29 28°  0.566 0 90° 0.187 0.89
0.5 0.87 143° 0.670 0.32 30° 0.552 0.26 90° 0.172 0. 84
0.6 0.8] 140° 0. 672 0.32 30°  0.551 0. 31 90° 0.176 0.78
0.7 0.72 143° 0. 688 0.34 30°  0.519 0.36 90° 0.212 0.71
0.8 0.6l 165° 0.703 0.39 45*  0.640 0.38 - - -
0.9  0.44 135° 0. 744 0.40 90*  0.727 0.40 - - -
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Table 2.

Maximum relative oscillation of mean mean semimajor axis

0%

lmax Aaa‘l
o a** at lmax Aa*| a: Orbits
0. 965 1.02404 0.999275 0.0247608 0.0247788
0.070 1.02051 0.999472 0.0210415 0.0210526
0.075 1.01702 0.999637 0.0173850 0.0173913 (¢,0 0, retrograde)
0.080 1.01356 0.999770 0.0137899 0.0137931
0.085 1.01013 0.999872 0.0102551 0.0102564
0.090 1.00672 0.999943 0.00677928 0.00677966
0.095 1.00335 0.999986 0.00336130 0.00336134
1.000 1.000 1.000 0.000 0.000 (4),0 = 0, equilibrium)
0.005 0. 996680 0.999986 0.00330574 0.00330579
0.010 0.993388 0.999945 0.00655702 0.00655738
0.015 0.990123 0.999878 0.00975491 0.00915610
0.020 0.986885 0.999785 0.0129005 0.0129032 (¢,0 0, direct)
0.025 0.983673 0.999668 0.0159947 0.0160000
0.030 0.980487 0.999526 0.0190386 0.0190476
0.035 0.977327 0.999360 0.0220331 0.0220472
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6. HIGHER ORDER SOLUTION

We are left with the question of whether or not the process of solution
can be extended to higher orders of approximation. The next step would

correspond to von Zeipel's equation

3
(¢, o m) CEN Ll 98, /> +a¢1 95, /5 . 99, 85,
0 0 <'9'r]1 8111 6 0 8111 89X, 81‘;1 90X, 9m,
9F 8S
= o 1°71/2
=F3 X Xy Xpingie) + o, 3%, (33)

where the functions S1 and F3/2 have to be determined. In the first-order
1/2

(e / } solution, equation (10) was solved with F1 defined as the minimum

of ¢1 with respect to ny this resulted in a stable equilibrium solution at

Y1 =1 (XO’XI’ XZ; YZ)' For such a condition to be satisfied as the order

increases to €3 2, we should define (Hori, 1967, private communication)

3
S b 95, 12 V2% 951 p 8¢, 85, OF 35
3/2 6 0\ 9n,

; (34)

+
8X1 8111 BXZ 81’]2 87]2 8X2 0

ny=mn; £

but for this definition to be consistent, we have to prove that the quantity in
brackets takes the same values at the two end points of the libration in ny -
This is true, of course, for 851 /2 /8111. But for all other terms, the verifica-
tion of such an hypothesis is not trivial. Assuming moderate eccentricity

and inc*lination, since at the end points of the libration in m the semimajor
axis a 1is not unity, at those points we might be able to have a valid represen-
tation of the disturbing function by the classical development. Neglecting

terms of the fifth order in the eccentricity and in the sine of the inclination,

we have (Brouwer and Clemence, 1961):
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_ %2 ¢ sk
4)1 = €a R,2 + = y (35)

a

®
where a < 1 and

*2 % 2 %
+[Tlge 02(43- -3j-1-(4j-2)a D, +a D*) Bj]

a a

. cos[(j+1)'ql—2'q2]$ ;

here,
x2 21
o = sin 7
£ *
a =a
p?, =8
- O3 g
a a
and
Aj =b 1/2 (@)

B. = b{3/2 (cx*)
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are the usual Laplace coefficients. By use of the above expansion and its
reciprocal for a* > 1, it seems possible to show that, in fact, the definition
contained in equation (34) is meaningful. Such a proof, nevertheless, must
be considered with much care, since expression (35) is only a crude

approximation for the function ¢1.

Even if such a proof could be achieved in its full generality, we would
still wonder whether or not the process could be continued up to any order
of approximation. Even then, the last question remains — are the formal
series thus obtained convergent ? In part, we can answer the question of the
validity of such a solution by comparing its results with observations or by
numerical integration. As we have already mentioned, such verification
has been very good indeed in the problem of the motion of Pluto (Hori and

Giacaglia, 1965); we hope it will be equally good in the 1/1 rational case.
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Figures 1-36.

Averaged disturbing function over short-

periodic perturbations.
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Figures 37-45.

Minimum energy curves for long-

periodic perturbations.

51




0.760

0.740

0.720

0.700

0.680

0.660

0.640

0.620 R

0.600

0.580

0.560

0.540

0.520

0.500

0.480

0.460

0.440

0.420

0.400

0.380

0.360

0.340

0.320

0.300

0.280

0.260

C=0.!
e=0 TO e= 0.999

0.999

30 45 60 75 90 105 120 135 150 168

Figure 37.

52




MINIMA C=0.2
e=0 TO e=0.98

0.700 — 027 0.28
; 5.26 \ﬁ
0.680 |- _ RS
SEEREREIRNG 2 o
0.660 — 0000000000080 0.22 ‘Qé\\\\k}
- N

0.2Q < Sl T
0.640 | ////////////// s 0 0.30 018> Q’s\\\ \:
l— e 0.1 . .. N .
0620 I 000,005 ol 5 oy e .

0600 A e 0.33 ;”/o.oo —
0.580 \\ e :

0.560 .

0.540 A

0.520 - /

0.500
0.480
0.460
0.440

0.420

0.400
0.380

0.360

0.340
0.320

0.300
0.280

0.260

0.240

I
@
n
o
[}
o]

15 30 45 €0 75 90 105 120 135 150 165 180

Figure 38.

53




MINIMA

C=0.3

e=C TO e=096

) I

0.8%
0.90
0.92
0.95
0.96

0.95

0.700 —

0.650 +—

0.250

0.200 —

180

165

150

135

120

105

90

75

60

45

30

15

Figure 39,

54



*

T T T T T 17 1T 1T T 1

MINIMA  C=0.4
e=0 TO e=0.92

Figure 40,

55



0.680 —

0.660 —

0.640

0620

0.580

0.560 F

0.540

0.520

0.500

0.480

0.460

0.440

0.420

0.400

0.380

0.360

0.340

0.320

0.300

0.280

0.260

0.240

MINIMA  C=05
e=0 TO e=0.87

0.220
0.200
0.180 = T 585
B 0.84
0.160
J | | | | | ] | | | | 1
15 30 a5 60 75 90 105 120 135 150 165 180

Figure 41.

56



O
Q&g«é_g“

AN

MINIMA C=06

Figure 42.

57



0.500

0.480

0460

0,440

0.420

0.400

0.380

0.360

0.340

0320

0.300

0.280

0.260

0240

0.220

0.200

T 1 1 1 11

MINIMA
c=0.7
e=0 TO e=0.72

Figure 43.

58



MINIMA  C=0.8
e=0 TO e=0.6l

Figure 44.

59




ey

0.800 —

0.780 —

0.760 —

0.740

0.720

0.700

0.680

MINIMA C=0.9
e=0 TO e=0.44

0.40

0.660

0.640

0.620

0.600

0.580

0.560

0.540

= 0.14 0.13
0.520 0.12 o.n —
0.10
= 0.09
0.05
0.500 — 0.00
| i | i ] | | | J | | i -
0 15 30 45 60 75 90 105 120 135 150 165 180
Figure 45.

60




Figures 46-54.

Iscenergetic curves for the long-periodic motion

ot perihelion.
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